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1. The equations of motlon of a heavy gyrostat fixed at one point, as is
known [1], are of the form

A %‘ +(C — B) gr + mar —mgr = yo'1s — 2’13, C‘T}’zi =rra—qYs. (%' =Mgz) (1.1)
B '%I' + (4 — C) pr+ myr — mgp = 2'1L — 2,73, ‘%2“ —MmT
€I 4+ B — ) pg+ mp—mig = %N — W'n, = m—m

The system (1.1} does not contain time explicitly, has its last Jacobl
multipller equal to unity, and admits of the algebraic integrals

Ap? - Bg? 4- Cr2 — 2 (xo'T1 4 yo'1z -+ 2073) = M1
(Ap+m) T+ (Bg+m) 1+ (Cr+m)rs=hy, TEH12+12=1 (L2
As was shown in [1 and 2], the system of equations {1.1) reduces to gquad-
ratures 1f x/= y,% z,’= O , when it admits of the fourth algebralc integral
(Ap ++ m1)? - (B + ma)? +(Cr +- ma)? = L?

and in the case 4 =B, x=y, =0, m=my= O, when it has the integral
ro=re.

We formulate the problem of finding general conditions for the existence
of new algebraic integrals of the system (1.1) which are independent of the
clasical integrals (1.2).

2., We shall show, first of-all, that if Poincaré's theorem [3 to 5]
holds, then for the existence of a new algebralc integral 1t 1s necessary

that the ellipsoid of inertia with respect to the flxed point be an ellip-
soid of revolution. We replace

Py 0, F, T Yo Yst by A72p, A7%q, A, ATy, ATtre, Ay, AR O
where )\ 18 zn arbitrary parasmeter, and we introcduce the new varlables
N=VA@d—0p+iVEB—~04q y2=VAA—-COp—iVEB—-0Cq
21 =Ti1+ Y2, %Z2= 11— iT2

633



634 I.A. Kels

As was done in [4 and 5], we replace
Y1, Y2, 21, 22, T8y ¢ by 7"3/1, Y2, A'zly KZ2, Nfs» —it

Utilizing the integrals (1.2) for Equations (1.1) in new variables, fol-
lowing [5], we can prove Poincaré's theorem: 1if the ellipsoid of inertia is
not an ellipsoid of cevolution, then for arbitrary- initial conditidns, except
for the case x," = y,/= 2,’ = 0 , there cannot exist any new algebraic integral
of the system (1.1).

3. We shall prove that 1f %2+ y¢'? + 202550 and m,2 -+ ma? + m2 5 0, the
the fourth algebraic integral is possible only in the case of a gyrostatic
analog of Lagrange's case [2] defined by conditions

A=2PBzxy =y =0, m =mg=0
We replace
Py @ Ty Yo T2, Y3, £ by ATp, AT3q, ATSr, AT10qq, AT10ve, A0y, ASit 4 ¢
and introduce in Equation (1.1) the variables
ni=p+ig, y2=p—iq, z21=711FiT 22=T1— T2

my = my+ imz, mof = my— imz

Let us assume that, in accordance with Poiricaré's theorem, 4 = B ; then,
for an appropriate cholce of the coordinate system, we find y, = 0 . The
system (1.1) becomes the system

AW (C— A) ry, + 2¢'2y — o' 1s + A (mgyy — my'r), % =mYs— 15

dt
d22

- %!i— = (A —C) ry, — 20"z, + 273 + A5 (my'r — mgy), F7e} =TI — Yl 3.1y

d
—1’; = Y221 — Y122

208 = oy (5 — 2) + M (m'yy — miw), 2

For the system (3.1) we have the following first integrals:
Ayye + Cr2— x (2, + 29) — 2213 =Ny (38.2)
A (122 + 21y2) + 2Cr7s + A (my'25 + my'zy + 2maTy) = Ry, 2123+ Y5 = by
If we agalin introduce an arbitrary parameter by replacing
Yi: Y2r Ty 215 22, T3o £ DY A%y1, Ayy, Ar, A321, A%za, AS7s, A1 -+ ¢4

then the system (3.1) and its first integrals (3.2) assume the form

A (Sl_tl = — (4 — C) ryy + 2’2, — 29'¥g — A (my/r — Amgyy), d%: — rz; -+ AyyTs
AW = (A — C) ry, — zy'z5 + Axg'va -+ A* (my'r — mgy), % = rzg — ATy

dt
2C d_r = xy (29 — 7‘121‘)_”t (my"yy — Amy'yy), 2 %I} = Ya23 — Y122 3.3)

Cr2— ayzy + A (Ayyyy — 2’2, — 220’75 = Iy
A (y1z2 + z3y2) + 2Crys + A% (my'z2 + Ama'z14-2hmsys) = Ka, 2122 + M79° = ks (3.4)

Husson showed that if m,’= mJ= my= O , the fourth algebraic integral
exists in Lagrange's case (4 = B, x = yo= O) and Kowalewski's case
(4 =B =20, y'= z/= 0) ; the proof utdlized the first three terms of the
series expansion of the general integral of the resulting system of equa-
tions in powers of the parameter X\ , which was assumed to be small. It was
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also taken into account that the right-hand sides of the resulting system of
equations and its first integrals were polynomials in y,, yz, s 215 23, Ys
and A . It may be noted that the first three terms of the serles expanslons
in ﬁowers of A of the general untegral of the system (3.3) and integrals
(3.4) are polynomials in y,, Vas ©s 2,, #35 Ys 8nd L and are independent
of m/’, m;y and mg . For this” reason Husson's result should be regarded as
one of the necessary conditions for the existence of a new fourth algebralc
integral of the system (1.1). Thus, the problem reduces to finding new con-
ditions in addition to those which hold for Kowalewski's and Lagrange's cases.

4, Let us find these conditions for Kowalewskl case. We set
A=B=201w =2/ = 0,c=2C, gy =m/C-! (i =1, 2) my = msC-?
and, replacing in (1.1) the quantities
-t 1 -1
p,4q, M, T2, Ts, t Ha )” /,p» A /’q’ A /’r! A'—l,rlr A'—l'l'z, }\'_1731‘ ;"l/zt+ to

we introduce
Bw=pF+ql, yg=p—qi, =T+ Ta=T1— iTy, M =my+ ims, my = m; — imy

By replacing

Y1» Y3, Ty 23y 29, Ta, t by A"/’yl» A'—llzyz' A-l/’rv 214 }"-lzza 73; i}‘l/’t + to

as indicated in [6], we obtain instead of (1.1) the system of equations

za-l_yi=—ry1—cn+7~ms’yl—uxh 2o = — ru+ Ml
dt dt

2 ‘Zd:itz- = ryg + xCTa— }vmslyg + }szry deZti =rzg — 7‘1/273 (4‘1')
d

2 7;.'_ = ¢ (23 — Azy) + Apay, — }“}hyz» 2 %\;l= YaZy — Y122

For the system (4.1) the following first algebraic integrals exist:
r?—czy - A Quys —cz) = hy
2y123 + 22y, + 2r75 + paza + A (Peza + 2my'7y) = By, 2,25 + ATy% = hyg

If (4.1) has & fourth algebraic integral, then according to (4], the sys-
tem

dys _ _ rya-+Aeys— Mm'sys + Apar , drs _ YaZi — Y153 (4.3)
dr (23— Az1) — Ahya + AMpayn dr (22 — A1) — Apaya + Apays o

(4.2)

in which y,, z, and gz, are expressed as functlons of Yz, ©s Yss My ha and
hs from (4.25, has the algebraic integral F(ya, vas 7> M s Pas h,j = const
This integral can be expanded into a serles in powers of )V 1n a neighbor-
hood of % = O (where n 1s an integer):

FO (y27 781 T') + A'1/“Fl (yz: Ts’ r) + LR + A'Fn (ym 731 r) + « .. = const (4~4)

with coefficients which are algebraic functions of their argunents. The
quantity F, necessarily depends on at least one of the quantitles y, and
ya. If A is sufficiently small, the general solution of the system may
be expanded into series [5] in integer powers

n=nO+ A,V 4+ ..., y= o + AP+ L, 1= 1@ AR L
=20+ AW 4., 23 = 2380 4 Az, .,
Substituting this expansion into the integral (4.4), we obtain
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Fo (2, 159, 1) + AYFL (1,9, 50 0+

a oF
...+k[Fn—|-y,m ayF —(3—1:{.5)—]+...+).2()+...=c0nst

As was shown in [4 and 5], this relation makes it possible to represent
the first integrals, which a system of the form

zro) + 73(1)

Ve S N L 1

. —_ 0), (0) __,, (0), (0)
ar ) TY2 ar o lys"'z Yia ] (4.5)
dy" 1 i) ) (0 1
= : — mJ e _ ) __ , 0
ar czz(o’ [ryz + T3 mg'yy" -+ por czz(o) [e(zg z,'%) —}uyz("’]ryg‘ )]
dy,V 1 (4.5)

o= [yz(”zl“” 4y @20y @@ @y @

i
— _—_czz(o) e (23 — 2,0 — O] (g0 20 — (015,00 ]

must have, in the following manner:

Fo %%, 1, r) = const 4.7
oF, oF
F ©) ~ (0 (n (] (1) 0 —
nlya Ty ) Ty O +1s RO const (4.8)

Let us consider the particular solution of the system (4.3), setting
hy = a?, hy =A%, hy= Al
Then from {4.2) we find

r2— czg = az, 23/1(0)22(0) + 221(0)y2(0) + 2’.,],3(0) + l“‘122(0) =0, ZL(O)ZS(O) =0
It follows from this that
2 __ .2
0= "2 | 21(0) =0, ?/1(0) = < 2 '1’3(0)_ 1
¢ r:—a 2

Then from (4.5) for the determination of ya(o) and 73(0) we have
(0) (0) ,
dys™ r (© dys LR %1? (4.9)

- Yo'y
dr® rt— at dr r?— q?

The equations (4.9) will be satisfiled by the following particular solu-

tions:
%" =0, 1.9= % Vree—atln(r+ Vri—ay (4.10)
c

Since Equation (4.7) determines the algebraic relationship between the
above-mentioned arguments, then in order to eliminate the contradiction which
is evident in an examination of (4.,7) and (4.10), it must be assumed that
either 7, 1s independent of 7, or u, = O.

Assuming the first case, we replace in (1.1)
Py g5 s Tis Tas Tas ¢ by A1 E] A'—l(b }"_lr7 A-"zTn ;"_2]’2» }‘_ZTS At + tO

respectively, and we write the equations, retaining the earller notation and
quantities, and replacing
Y Y2 75 21y 225 Tao by A".'/11 )‘y27 T, AZzy, 29y }"73v A%t + ty

In a manner analogous to the foregoing, the problem reduces to the study
of a system of the form
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dr c(zy— Mz — MugyetApayr © dr ¢ (z — Afy) — My, + Mpay,

in which y,, 2, and 2z, must be replaced by functlons of y,, 7, va, M, hg
and hs from Equations

r?— czy — A%ezy + 2A%yyy, = Ry, 2r7s + puzat 29125 + 2Amy Yy +2M%yaz1 + Alpesy = ha
2123 + Y2 = hg (4.12)

dys . Tyst Par + crs — Amg'y, dYs _ — 1% + My, (4.11)

Let us consider the particular solution of the system (4.11) determined
by the following values of the srbitrary constants of (4.12):

hy=a3, hy=»A3, hy=A? (4.13)

Then, utilizing equations (4.12) and (4.13), we pass from the system
(%.11) to the system

dys — e+ pr +oer®  an® e (4.14)
dr PR dr ¢

The system (4.1%) will be satisfled by the particular solutions
r

d 2 __ g2

To

1= __2“% Vr—aln(+ Vri— a?)

where w(rz._ a®) 1s an algebraic functlon of the above argument.

If u,# O, the function Fq (ya(o’. rY  1in a manner similar to, the fore-
going, must be dependent of 3/2(0) which contradicts the property of

Fy (yz(o), 73(0)7 r)
and we must assume from [4 and 5], that yu,= 0 1s a necessary condition for
the existence of a fourth algebralc integral of the problem under discussion.

If u,= 0, then uz= 0, which 1s obvious. We shall show that mg'= O as well.
Introducing new variables into (1.1), as in the previous case, and replacing

1]
Yi» Yar Ty 31y 22, Y3 ¢ DY Ay, y2, 1y Az, 25, Atg, At 4 1
we reduce the problem to the study of a system of the form

dys _ rys + Acrg — Amg'y,, a3 . Ya& — YiZa (4.13)
dr ¢ (23 — Azy), ’ dr ¢ (29 — Azy)

In a manner analogous to the above, 1t can be shown that a necessary con-~
dition for the existence of an algebraic integral of the system (4.15) will
be my'= 0 .

Thus, 1t can be asserted that the first set of necessary conditions for
the existence of a new fourth algebraic integral of the system (1.1) can be
written in the form 4 =B =2C, yo' = 2y =0, my=my = mz=0

5, We shall now prove the assertion made 1n Sectlon 3. In equations
(1.1) we replace

P, Tlv 721 T31 4 by }"_lp7 7»“‘17 }"_lr) }"_271’ A'_2T2, K_QT:;, }-t + to

Then for y,, ya,» r and y; We obtain equations of the form
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W — (i — 1) yor + 297, + A (mgyy — myr), LA i 7 it RN
dt dt 2m
dys dYs _ Yati— Y17y

at = (1 — m) yor — 242, +A (mgr — myy,), ’r )

whgre m = (4", while m/4"' and 2,4"' are replaced, respectively, by m,
an 24

Directing the axis (Ox along the directional vector of the equatorial
component of m , we find m = M3, Let us consider the quantities

E=A1(yt %) N=¥1—Yn I=z+12, B=A(—2z) u=2>Ailr

In order to determine these we have Equations

ig = 9m (m — 1) [u + mg/(m — 1)In + AzoB d_Tg= m —na + A% (5.2)
du nym ’ du 2 mym -

In a manner analogous to the above, in the new variables we obtain a sys-
tem of intergrals of ZSquations (1.1) in the form

— n? — 8zp7y -+ A2 (2 4 4mu?) = hy, Ea -+ 2myoe + 4m (w + mg/m)1s — Ap = he
a®+ 47% — A3% = by (5.3)

From the system (5.2) and the integrals (5.3) for &, and vy;© we have
Equations

_ (0)
B — ypm 1(u+ 2 ) L ¢ M R (5.4)
du mq m— 1 V hs — 473(0)2 2my

which have the following particular solution :

u
my A m —

e
Uy

In a manner analogous to [4 and 5], we conclude that if the fourth alge-
braic integral exists, it must depend only on ¢ and y

Let us consider the particular solutions for the values A, = h,= A%,
he= 4A%. 1In this case, from (5.2) and (5.3) for determining €, and v,'*,
we find Equations

dE; _ _ mlE +2m (u+ mg/m)+ 2myi] 11 + itk apsV _ _ im s
51— _ Mise i , =— 2 1 (5.5)
du 2myY, du my

which have the following particular solutions

El = exp ('_.;'::nu ) 73(1) — 0
1

This indicates that the fourth algebralc integral 1s independent of g
as well, but this contradicts the property of the integral, or else the
reasoning does not hold, which 1s possible only if m; =my= O . In this
case, as follows from [ 2], the classical integral r = r, exlsts, and we
nave completely proved the assertion of Section 3 that -if z¢? +yy' + z0° 0
and m,% + ma? -+ my® =0 & fourth algebraic integral 1s possible only when
A=B, 2/ =4'=0, m=me=0 -

The author expresses hils gratitude to Iu.A. Arkhangel'skili and P.V. Mias-
nikov for thelr valuable advice.
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